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CONSTANT STRAIN ANALYSIS

ROBERT A. GUYER
LoS ALAMOS NATIONAL LABORATORY

ABSTRACT

The state of a linear system is independent of how hard it is driven. Not so, a nonlinear
system. As you sweep a nonlinear system through resonance you change the state of the system.
If you want to study a system in a particular state it is advantageous to maintain it in that state.
The antagonism between conventional experimental practice, sweeping through a resonance, and
the desire to maintain the system in a particular state is mitigated by constant strain analysis. The
analysis of a sequence of resonance curves on a Berea sandstone will be used to illustrate
application of constant strain analysis. The idea of constant strain analysis generalizes to
constant field analysis. Resonance data can be treated so that the field (displacement, strain,

velocity, ...) responsible for the nonlinear behavior of a system can be identified.

TRANSCRIPT

DR. GUYER: The work that I am going to talk about is done experimentally by Jim
Tencate at Los Alamos, the theoretical work by myself and Eric Smith, who is also at Los
Alamos.

[Transparency 1 and return to Transparency 6 from his previous presentation]

Just to remind you, Katherine went over a bit of what I might have said about theory, so I
will figure out some way to sort of pass over that. Here is another example -- Fontainebleu.
This is just to remind you to think of the fabric of defects in the rock as the important thing that
determines its elastic properties.

One of the things we are going to be talking about is the theoretical model that relates the
quasi-static measurement of the dynamic measurement just to make it seem like this is making a
deep statement. There is a traditional model of elasticity that involves Taylor series expansion of
the free energy in terms of the strain field. Nonlinear elasticity would just have -- those are the
Cijx1 and there would be a whole bunch of other fancy coefficients, high-order terms in the

strain field.



There would be other higher order terms in the strain field, all of it, basically, on the other
hand, assuming analyticity of the free energy, so you develop notions of cubic nonlinearities and
if you are a phonon physicist, you talk about the 3-phonon process and the 4-phonon process.

If you do acoustics, you talk about the coalescence of 2 acoustic waves to produce a third, 3
acoustic waves to produce a fourth, and so on, and these are well-studied phenomena in
nonlinear elasticity.

If you try to make a theory at all involving hysteresis, discrete memory, the kind of
magnitude and sign of the frequency shift we are going to talk about in resonance, this theory
simply does not come anywhere near it. It simply cannot be used. In some sense, it would seem
that for the kinds of materials we are talking about, or at least that I am talking about, this is
simply not the way to start and it is not the way you would go about describing the materials.

[Transparencies 2-5]

In some sense, the traditional theory, which is this theory of strain fields and Taylor series
expansions in strain fields, does not really work well. But we know it is not supposed to look at
all these phenomena, extremely large nonlinearities, hysteresis, and discrete memory.

But there is a theoretical model and it is the one that I alluded to and I will now allude to it,
again, that does describe the quasi-static measurements and I am going to tell you about the
experiment that confirms how that theory also, seemingly, describes the dynamic measurements.

Remember, it was a theory where we paid attention to the elastic elements between the
grains; the grains were thought of as essentially rigid. This comes with a very fancy name, it is
called "PM space," and the reason for that is that the original description of hysteretic elements,
whether they be elastic elements or magnetic domains or happen to be fluid configurations, is
due to a man named Preisach, a German scientist from the 1930s, and it was elaborated in an
engineering context by a man named Mayergoyz, so we called it PM space, but it is a place in
which one tracks the hysteretic elements that are in your system.

In our case we will be talking about hysteretic elastic elements, and it is a space in which
you track the way in which the hysteretic elastic elements are responding. If you are doing a
quasi-static measurement, it is the response to the pressures or the stress fields you are putting on

the system or, if you are doing an AC measurement, it is the response to the AC stress fields that

happen to be in the system.
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I am not going to say a great deal about that, except to remark that the theoretical model
actually has a rather nice feature.

[Transparencies 6-7]

The feature is that it gives you the qualitative description of the quasi-static measurement
but it also provides you with the recipe where you can take the quasi-static measurement and
actually infer some of the quantitative features of the elastic elements that you are talking about,
the hysteretic elastic elements, so there is a forward model where, if you happen to know how
the hysteretic elastic elements behave, you can predict that curve and you can predict the details
of the discrete memory and the various interior loops and so on, but it also has the property that
if you have a suitable set of data of this type you can actually infer what the elastic elements that
are in the system are like.

Then what you notice, of course, is that this is a discussion about quasi-static
measurements, somebody squeezing with 200 atm up and down. Of course, when a sound wave
goes through a piece of material, it squeezes it locally with a pressure that might be a fraction of
an atmosphere. A sound wave does nothing more in a material than what the quasi-static
pressure, except for issues of time scale.

If you have some understanding of the elastic elements in the material for these big 200-
atm variations, you might also be able to give a discussion of basically how an elastic wave
propagates through the material. That is what we hope we have done.

[Transparency 8]

Here is the program. We have from Greg Boitnott at New England Research a spectacular
set of quasi-static measurements. We are able to analyze those quasi-static measurements and
actually say something quantitative about the nature of the hysteretic elastic elements that are in
the system.

We are then able to take our understanding of those hysteretic elastic elements and imagine
now that there is a sound wave going through the system. This measurement goes over 200 atm
and that space where we have an understanding of the way in which the hysteretic elastic
elements behave is sort of 200 atm from top to bottom --

DR. SACHSE: On that second plot, what are the axes? 1 have no idea what you are
plotting there.
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DR. GUYER: The behavior of the elastic elements in this material, how they behave. You
squeeze on the material and the elastic elements might, for example, make a discontinuous
change from having one spring constant to another at some point in the pressure protocol that is
going from, let's say, 0 to 200 atm. I did not want to allude to this in great detail but just to say
that it was possible to do this, so this is supposed to be a picture that says I understand how the
elastic elements respond to pressure.

DR. LEVY: What are the coordinates?

DR. GUYER: You do want me to talk about this, don't you?

The elastic elements are hysteretic, they behave something like this. The elastic element is
in state one, you squeeze with a pressure, it stays in state one. At a certain pressure, it makes a
transition to a different state and it stays in that state, i.e., you continue to increase the pressure, it
stays in that state. You decrease the pressure, it stays in that state until a second pressure, when
it goes, boop, back to the other state.

The coordinates in this so-called PM space are the pressures, the two pressures, at which
the elastic elements respond. It is somewhere between 0 and 200 atm, because that is the range
over which the measurement was made.

From an understanding of the elastic elements in the quasi-static measurement we can
predict the behavior we expect, for now a very small pressure variation in the material, much
more modest than the 200 atm, so we can predict the behavior here.

DR. LEVY: On the vertical coordinate, that is, again, number density, probability?

DR. GUYER: That is a density of elastic elements in a space where you track their
response to pressure and the two coordinates are two pressure coordinates and the density is the
number of elastic elements that respond in a particular way to a particular pressure. That is the
part [ was trying to avoid talking about in detail.

You would not normally start out describing elasticity this way, you would write down
some Taylor series expansion. Who the hell would write down a density of elastic elements in a
space where you track their hysteretic behavior? But if you are going to describe this kind of
experiment, you cannot get away without doing that.

Here is what traditional theory predicts. Traditional theory is the Landau-Lifschitz-Taylor
series expansion. It says, for example, for the fundamental resonance in a bar you would find a

shift in the frequency of the maximum going as the square of the strain field in the bar and in
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proportion to something which is the quartic anharmonicity -- it is usually called delta among the
people who do this for a living. You would find a nonlinear attenuation, a Q, differing from the
Q at a basically arbitrarily small strain field, that goes as the square of the strain field.

For the strain fields we have been talking about, (they go to, at most, on the order of 10)
the coefficient delta is thought to be of the order of 10® and would suggest a frequency shift of
one part in 10° and a one part in 10° change in Q.

What is observed experimentally is that -- well, let's go to the other theory, first, I guess. It
predicts is a frequency shift proportional to the magnitude of the strain field; that is, this is this
nonanalytic function, a coefficient that is related to the density of elastic elements in that space
up there. It is related somehow to that density; again, there is a theoretical model that is rather
elaborate that has to be carried out to do this.

A change in Q, also proportional to the magnitude of the strain field, again, a nonanalytic
function, with a coefficient not quite the same as C1 but related to it by
4 11/3, so of the same order of magnitude and, furthermore, from an understanding of the density
in that space you can actually say that these numbers are of the order of 1000. That is a
prediction.

Now, what I am going to talk to you about is an experiment to try to confirm it. The
experiment, of course, is just a resonance experiment, but if you are doing nonlinear resonance,
you have to do things in a rather -- you do not have to -- you ought to do things in a rather
different way.

[Transparency 9]

This experiment was done by Tencate. It is the data you have seen now about 4.5 to 7
times. This experiment was done after the Berea sandstone, that long and that big in diameter,
had been in a vacuum chamber for about seven months, and it was done during the 8th month.
The experiment is still in the vacuum chamber; it has now been about 18 months. It is in a
temperature-controlled environment, so we are trying very much to -- in fact, you have to, you
have to worry about humidity, as somebody pointed out.

You have to worry about temperature, a rock is a very good thermometer. The
measurement is to look at the resonance as a function of the drive amplitude. If you are used to

doing linear resonance, then you do not think about this too hard. If you do nonlinear resonance,

81



then in some sense you think about it in this way, you fix the voltage of the drive amplitude, let's
say 81, and you measure a certain number of frequencies that take you through the resonance.

You change the drive amplitude. You go through the same set of frequencies again, change
the drive amplitude, go through the same set of frequencies again, that is, generate this set of
curves. What you are actually doing is filling out a matrix; that is, there are n values of the
voltage, m values of the frequency, so each experiment is, in some sense, a matrix of response at
a set of points that are characterized by the voltage you are driving with and by the frequency.

Because of the known delicacy of this system to things like temperature, or whatever, when
we actually do this experiment, we accept an experimental run if we go to this voltage and run
through the frequency, go to that next voltage and run through the frequency, go through the
whole series of resonance curves up and down, as the voltage goes up to the very highest
voltage, come back down, do the resonance up and down and --

[Transparency 10]

-- compare the whole set of resonant frequencies you have been finding the whole way and,
if they are not consistent with one another by some sensible measure of their value, we generally
do not use the experiment, because there are very slow time evolutionary drifts to these systems
that one simply cannot avoid, so there is a great deal of effort put into being sure that there are no
systematic events taking place at the same time that we are trying to give a discussion about very
precise analysis.

What you actually do is you measure the in-phase and out-of-phase component of the
response at every voltage and frequency. You actually measure 2 matrices. I call the in-phase
matrix A and the out-of-phase matrix B, and if you want to think about how to think about it,
plot the frequencies at which you make the measurements this way and then stack the set of
voltages back that way.

Why are we doing this? We are doing this because the nonlinear state of a rock is a
function of some internal field in the rock, its strain field, the velocity field, something like that.
When you go through a resonance curve you are continually changing the strain field, so you are
continually changing the very field you are interested in trying to understand; that is, you sweep
a resonance and the strain is very small here, it is very large there, very small there, you change

the voltage -- the same thing, again.
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If you are going to try to talk about the way in which there are various internal fields in a
rock (in anything, in anything that is nonlinear), that cause consequences in the behavior of the
rock, you might want to look at it at constant values of the field that causes the consequences.
That is, you might want to study these data not by studying resonance curves but, rather, by
taking a family of resonance curves and studying them on trajectories that cut through the whole
set of resonance curves at constant field so that the rock is in the same state along this trajectory
the whole time. It is in a continually varying state along that trajectory.

The things we have done in order to be able to make rather careful quantitative
measurements is to analyze data --this was called "constant strain analysis" -- sefs, if you like,
cutting this matrix like that as opposed to tracking it like that.

[Transparency 11}

This is how you do it. You take a bunch of data, there are all kinds of prefacing related to
determining internal phase shifts and so on in the instruments. It is supposed to be a set of
resonance curves and you essentially cut them that way and produce -- I am going to show you a
contour plot of what a nonlinear resonance looks like, and you study it along contours of
constant strain to understand its behavior.

[Transparency 12]

There is one other wrinkle -- well, it is not really a wrinkle, but another little thing we do
when we do this study -- we do not fit Lorentzians to resonance curves. The Lorentzians actually
drive to zero the edges of a resonance curve.

What you ought to do -- there is the in-phase component, it has got this big denominator, so
as soon as you get off by a Q-and-a-half to the left or right, you basically drive the amplitude, so
you do not want to fit A to a Lorentzian, or the out-of-phase component to a Lorentzian. You
can experimentally get rid of this denominator, because it is just the sum of the squares of the 2
fields you are experimentally measuring.

Of course, again, I said these are matrices. You have a matrix entry A; at each voltage and
frequency, a matrix entry Bjj and a corresponding magnitude of U, so just manipulate your data
like this. What you are studying is simply -- I used a bunch of dimensionless measures here —
omega squared minus one, and you can understand where the resonance is very simply in this

thing. If you study that quantity, you are basically simply studying omega divided by Q.
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If you have got a nonlinear resonance, it has got a very peculiar shape; you certainly do not
want to say the width has anything to do with Q. You learn about Q by studying the way in
which the amplitude at resonance evolves or you can, if you like, study this function and Q will
be the quantity in the denominator.

[Transparency 13]

Here is a sequence of resonance curves. These were the ones that were studied. They were
on Berea sandstone and there were about 121 frequencies -- do not ask me what the voltage was
but I will tell you that the strains went from 2 x 10™® for the lowest curve to basically 6 x 107 for
the highest curve.

You almost cannot see it here, but if you look extremely carefully, you will see that the
resonances here (and it is shifted slightly to that side of this dashed line), so this is the very low-
strain region of the nonlinearity, and that is what we are going to study to try to see how that
frequency shift moves as a function of strain field.

If you take that same set of data and spread it out and do the constant strain-field cut and
look at it as a set of contours, now you can actually notice the resonance very cleanly, notice the
change in the resonance, because the contour of constant strain actually -- it is not symmetric, but
the important quality is that along this trajectory the system is in the same elastic state.

A normal way of doing resonance cuts it this way and then moves from elastic state to
elastic state the whole time you are looking at it. This way you look at it along a constant elastic
state and you do the various things I described.

[Transparency 14]

I will show you what the answer is. If you do very careful analysis of the behavior of the
resonance at constant strain field along each of these various trajectories, you can say what
resonance frequency characterizes the system on a particular one of those trajectories and, as you
go from trajectory to trajectory, therefore changing the strain, how does the resonant frequency
change with strain?

Similarly, you can measure the out-of-phase component and see how the Q varies as you
go from one strain field to the next.

[Transparency 15]
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This is the result. The Q is the amplitude at resonance. It is not related to the width -- of
course, it is related to the width, but since the system does not have a constant strain, you cannot
quite decide how to handie that -- so find Q from the amplitude.

The Q dependence is that 1/Q starts out at a value of 1/Qo and rises linearly in the
amplitude of the strain. The units here are arbitrary units but they are close enough to say this is
10 in strain. This happens to be a linear plot, so 107 is actually down in there.

DR. MCCALL: What are the triangles?

DR. GUYER: Up and down. Are you asking why are there triangles versus squares? At
the very lowest strains we are down at basically 2 x 10® and the noise in the system is great
enough that there is crazy behavior down here and then there is not so-bad behavior there, and
once the strain gets above about 107, things start to straighten out and you have to just imagine
there are systematics that make it very difficult to pin things down.

I tried to put some error bars up in here, but I did not put the corresponding error bars there,
SO you get a sense of -- one is talking about fractions of a tenth of a hertz on top of roughly 3000
Hz when you are talking about these kinds of numbers.

The frequency shift is experimentally directly proportional to the magnitude of the strain
field. That is confirming the prediction of the fancy theory and, if you like, "disconfirming"
traditional nonlinear elasticity.

[Transparency 16]

The only thing that remains -- not the only thing -- is are the numbers right? It is one thing
to get a qualitative answer and the answer is, yes, the numbers are right. As we go to Greg
Boitnott's experiment, we do the analysis for that stuff that is on the graph without coordinates
but, nonetheless, I will tell you that somehow I can show you how it is quantitatively related and
it predicts a numerical value for the coefficients that tell you how big the actual linear change in
the frequency, the linear change in the 1/Q will be, and this is not fantastic agreement, but the
fact that it is the same order of magnitude is gratifying, it is within roughly a factor of two of
what is observed experimentally.

We take this to mean that you can take an experiment like this one -- this one goes up to
strain fields of 10™ and involves pressures of up to, let's say, 200 atm and learn about the elastic
elements that are in the system and it also involves times scales (this is a quasi-static

measurement, so the time scales here are minutes to hours, multiples of seconds), you learn about
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the elastic elements in the system, then propagate a wave, which tickles the system with strain
fields of order of 107, so four to five orders of magnitude smaller on time scales that are
probably four to five orders of magnitude faster and, nonetheless, find that you have learned
something about the elastic elements over there that will also tell you, in a quantitative way,
about the way in which the elastic elements in the system respond to dynamic measurements.

Here is the conclusion. I said it in words, but there it is in pictures relating -- here is the
quasi-static measurement made out here, relatively high strain, relatively low frequency,
quantitatively related to the dynamic measurement, which is done at relatively higher frequency
and relatively low strain fields.

DR. MAYNARD: Do you have a reference for that PM space analysis?

DR. GUYER: Yes, Jay, there was one in Physical Review Letters about 1995. Also, there
was a Physical Review Letters about a month ago describing this experiment that I just talked
about and it makes reference back to this set of papers that are more or less behind it.

DR. SACHSE: Has anyone repeated that curve, that discrete hysteretic type of curve going
up and down and then doing it a second time?

DR. GUYER: Oh, yes. You go up and you come down and you do not go back to where
you were. You go up and you do not quite come back, and then you go up and about the third
time you come back. This all relates to the fact that you pick up a rock off the ground and it has
had a pressure experience in its life; you have no idea what elastic state it is in.

Some of the elastic elements in it are going to break, crack, or do whatever they like, the
first time you touch it or squeeze it, but after you have fussed with it just a little bit, it will
achieve an elastic state that still has hysteresis, discrete memory, and so on, but is repeatable and
reversible, and that is, in fact, the elastic state we have been talking about.

PARTICIPANT: Have you tried to add any pore fluids in there to sce if there is an --

DR. GUYER: Of course, as I said, this was done in vacuum and one of the things we are
very aware of is that pore fluids have a great deal to do with the way in which -- there is a
preliminary measurement from France, from Paul Johnson, in fact, that seems to show that
saturation has an influence, a striking influence, on nonlinear behavior.

I come from the school that says that saturation is not -- what we have learned here is that
the stress field, or the pressure, is not a good variable for characterizing a rock. If you have any

experience with pore fluids and pore spaces, you also know that the saturation is a not a good
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variable. You have to study the history -- you say the history of the chemical potential, how has
the chemical potential of the pore fluid been evolving, what is the state it is in at the moment,
what have you done?

Both of those are hysteretic things, the pore-fluid configurations are hysteretic and so is the
elasticity, and it makes it a really difficult system to study.

Thank you.
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